Inhibiting proteasome activity causes overreplication of DNA and blocks entry into mitosis in sea urchin embryos.

نویسندگان

  • H Kawahara
  • R Philipova
  • H Yokosawa
  • R Patel
  • K Tanaka
  • M Whitaker
چکیده

The proteasome has been shown to be involved in exit from mitosis by bringing about destruction of mitotic cyclins. Here, we present evidence that the proteasome is also required for proper completion of S phase and for entry into mitosis in the sea urchin embryonic cleavage cycle. A series of structurally related peptide-aldehydes prevent nuclear envelope breakdown in their order of inhibitory efficacies against the proteasome. Their efficacies in blocking exit from S phase and exit from mitosis correlate well, indicating that the proteasome is involved at both these steps. Mitotic histone HI kinase activation and tyrosine dephosphorylation of p34(cdc2) kinase are blocked by inhibition of the proteasome, indicating that the proteasome plays an important role in the pathway that leads to embryonic p34(cdc2 )kinase activation. Arrested embryos continued to incorporate [(3)H]thymidine and characteristically developed large nuclei. Pre-mitotic arrest can be overcome by treatment with caffeine, a manoeuvre that is known to override the DNA replication checkpoint. These data demonstrate that the proteasome is involved in the control of termination of S phase and consequently in the initiation of M phase of the first embryonic cell cycle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of developmental stages of embryo in the Sea Urchin, Echinometra mathaei

Sea Urchin is one of the most useful tools in developmental biology studies because this organism has the simplest kind of developmental stages. We aimed to determine developmental stages and timetable of Echinometra mathaei embryo (the species of Persian Gulf). The spawning of E. mathaei was induced by 0.5M KCl injection (1ml) into the coelomic cavity. After fertilization, embryos were placed ...

متن کامل

Local perinuclear calcium signals associated with mitosis-entry in early sea urchin embryos

Using calcium-sensitive dyes together with their dextran conjugates and confocal microscopy, we have looked for evidence of localized calcium signaling in the region of the nucleus before entry into mitosis, using the sea urchin egg first mitotic cell cycle as a model. Global calcium transients that appear to originate from the nuclear area are often observed just before nuclear envelope breakd...

متن کامل

Active cyclin B-cdc2 kinase does not inhibit DNA replication and cannot drive prematurely fertilized sea urchin eggs into mitosis.

Feedback mechanisms preventing M phase occurrence before S phase completion are assumed to depend on inhibition of cyclin B-cdc2 kinase activation by unreplicated DNA. In sea urchin, fertilization stimulates protein synthesis and releases eggs from G1 arrest. We found that in the one-cell sea urchin embryo cyclin B-cdc2 kinase undergoes partial activation before S phase, reaching in S phase a l...

متن کامل

Calcium and cell cycle control.

The cell division cycle of the early sea urchin embryo is basic. Nonetheless, it has control points in common with the yeast and mammalian cell cycles, at START, mitosis ENTRY and mitosis EXIT. Progression through each control point in sea urchins is triggered by transient increases in intracellular free calcium. The Cai transients control cell cycle progression by translational and post-transl...

متن کامل

Activation of protein kinase C alters p34(cdc2) phosphorylation state and kinase activity in early sea urchin embryos by abolishing intracellular Ca2+ transients.

The p34(cdc2) protein kinase, a universal regulator of mitosis, is controlled positively and negatively by phosphorylation, and by association with B-type mitotic cyclins. In addition, activation and inactivation of p34(cdc2) are induced by Ca(2+) and prevented by Ca(2+) chelators in permeabilized cells and cell-free systems. This suggests that intracellular Ca(2+) transients may play an import...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 113 ( Pt 15)  شماره 

صفحات  -

تاریخ انتشار 2000